Крупнейший лазер направил тераватты на кончик ядерной иглы

03 / 02 / 2010

«Национальная спичка» – так вольно можно перевести название этой грандиозной лазерной установки. На днях было завершено ее многолетнее строительство, увенчавшееся пробным пуском примерно на половине мощности. Вскоре «спичка» впервые зажжет термоядерные реакции в шарике-мишени. На краткое мгновение на Земле появится очень маленькая «ручная» звезда.

10 марта 2009 года американская «Национальная установка зажигания» (National Ignition Facility – NIF) произвела рекордный световой импульс в 1,1 мегаджоуля. При этом лучи системы в сумме несли в 25 раз больше энергии, чем импульс любого другого лазера, заявил директор NIF Эдвард Мозес (Edward Moses).

Вспышка длилась миллиардные доли секунды и послужила салютом в честь завершения строительства одной из самых сложных экспериментальных установок человечества. NIF – крупнейшая лазерная система на планете – должна наконец ответить на вопрос: возможно ли на практике приручить термоядерные реакции при помощи лазерной технологии?

Управляемый термоядерный синтез с инерциальным удержанием плазмы (Inertial confinement fusion – ICF) – альтернатива системам с магнитным удержанием (это токамаки и стеллараторы).

И подобно тому, как знаменитый токамак-гигант ITER, строительство которого международное сообщество ведет сейчас во Франции, считается венцом в своей области, NIF представляет собой самую мощную и сложную установку для ICF.

Кстати, интенсивные работы в этой сфере ведутся в разных странах примерно 30 лет, а конкретно проект NIF насчитывает уже 15-летнюю историю, из которых на возведение комплекса ушло 12 лет (и, заметим, примерно $4 миллиарда).

Познакомимся же с ним поближе.

Основной принцип ICF, также именуемый лазерным синтезом, прост. Сосредоточьте свет от множества мощных лазеров на маленькой мишени из смеси дейтерия и трития. Мгновенное испарение внешнего слоя создаст реактивную силу, направленную к центру, что приведет к сильному сжатию мишени и ее разогреву до температуры запуска термоядерной реакции.

Причем реакция, начавшись в центре мишени, распространится наружу во внешние, более холодные ее слои намного раньше (буквально в наносекунды), чем весь сжатый материал разлетится в стороны. Потому данный метод удержания горячей плазмы и назван инерциальным.

Однако предыдущие опыты показали, что даже с большим числом лазеров прямым облучением со всех сторон трудно добиться равномерного сжатия мишени, а это – ключ ко всему.

Микроскопические неравномерности, буквально неуловимые глазом, приводят к тому, что горячая плазма «расплескивается», прежде чем ударная волна внутри шарика запустит цепную и устойчивую реакцию синтеза. И даже если некоторые из ядер дейтерия и трития в момент такого «удара» сольются (а такое в прежних опытах, в частности на установке Nova, уже происходило) – общая цель не будет достигнута.

Потому в ряде предыдущих родственных установок, а теперь и в самой NIF используется другой метод создания равномерного облучения мишени – так называемый непрямой привод (indirect drive). Заключается он в том, что лазеры направляют не в саму мишень с ядерным топливом, а в специальный полый цилиндрик под названием hohlraum (его вы видите на снимке под заголовком), выполненный из золота, внутри которого на полимерной распорке и подвешен топливный шарик.

Мощный импульс лазеров, попадающий через торцевые отверстия на внутренние стенки цилиндра под точно рассчитанным углом, превращает его в плазму, которая окутывает топливный шарик и успевает выдать мощный импульс рентгеновского излучения, прежде чем разлетится прочь. Рентген и взрывает главную мишень, не хуже, а даже эффективнее, чем взорвало бы ее прямое попадание лазеров.

Благодаря мгновенному испарению внешнего слоя шарика последний сжимается так, что плотность вещества в нем подскакивает до 1 килограмма на миллилитр (то есть окажется примерно в 100 раз выше плотности свинца). Температура же вырастает до 100 миллионов градусов – это выше, чем в центре звезды. Такова теория ICF.

Любопытно, что физики уже умеют при помощи лазеров нагревать вещество аккурат до температуры центра Солнца, то есть до 10 миллионов градусов. Почему же для розжига реакции синтеза в дейтерий-тритиевой мишени нужно поднять эту планку еще в 10 раз?

Причина – давление. В солнечном ядре оно намного выше, чем в водородном шарике, потому и температурные условия для поддержания термоядерного синтеза в нашей родной звезде – более мягкие.

Лазерная система – главная гордость NIF. Ведь к ней предъявлены феноменальные требования. Достаточно сказать, что оборудование, занимающее десятки и десятки метров и весящее десятки тонн, смонтировано в залах лаборатории с точностью в 100 микрометров.

Все 192 УФ-лазера, обрушивающие поток света на мишень в центре целевой камеры, берут свое начало от одного слабенького инфракрасного лазера, луч которого делится на множество потоков. Каждый из них пробегает в общей сложности по 300 метров, проходя последовательно цепочку из гигантских лазерных усилителей и преобразователей частоты.

Длительность каждого импульса составляет порядка наносекунды – нескольких наносекунд, а согласование времени прихода всех лучей к мишени таково, что расхождение между самым «торопливым» и самым «опаздывающим» импульсом не превышает 30 пикосекунд.

Каждый луч в конечном счете попадает в строго отведенную ему точку на внутренней поверхности золотого контейнера, где создает «солнечный зайчик» диаметром 50 микрометров.

Интересно, что на полной мощности установка генерирует лучи, которые в сумме несут к цели 1,8 мегаджоуля энергии (так что нынешний запуск всех лазеров прошел не на полной «тяге»).

Отметим, что в мире существует несколько импульсных установок, по пиковой мощности сопоставимых с NIF, и даже немного превосходящих американского «монстра», но их вспышки длятся пико- либо фемтосекунды, то есть они на три-шесть порядков короче найфовских. А потому по суммарной энергии, заключенной в луче (или в нескольких лучах, как в NIF), они существенно уступают «суперспичке».

Львиная доля от этих «1,8» преобразуется золотым цилиндром в рентген, но лишь небольшая часть X-лучей оказывается задействована в разогреве и сжатии топливного шарика.

Тем не менее, и этого количества энергии для запуска термоядерной реакции вполне должно хватить. И хотя прямое облучение мишени принесло бы к ней больший энергетический поток, опосредованный метод дает намного более равномерное облучение всех боков шарика, чего и добиваются ученые.

Если цепная реакция в таком шарике будет запущена, он высвободит порядка 20 мегаджоулей энергии или даже несколько больше. Так что NIF должна стать первой установкой в своем роде, на которой энергетический выход от реакции синтеза превзойдет энергетические затраты на ее розжиг.

Улучшение в дизайне мишени и лазерной системы сулит поднятие термоядерного «выхода» с одного взрыва до 45 мегаджоулей (больше не позволят особенности камеры), а установки такого же типа, но уже следующего поколения смогут нарастить этот показатель еще в два с лишним раза.

А дальше? Дальше стоит подумать о промышленных системах такого рода, на которых полученную энергию можно было бы конвертировать в электричество. Как? Очень просто.

Микроскопические солнца в центре камеры при должной частоте взрывов приведут к сильному разогреву ее стенок, а это тепло можно конвертировать в ток в классической паровой или гелиевой турбине (некий теплоноситель, возможно промежуточный, следует пустить внутри стенок сферической камеры).

NIF способна производить один лазерный «выстрел» каждые 5 часов – больше не позволит разогрев оптической системы, приводящий к ее деформации. Но промышленная система лазерного синтеза должна подрывать в центре установки по несколько топливных шариков в секунду.

А значит, потребуется более сложный дизайн лазерного комплекса с мощным охлаждением, а еще – «пушка», стреляющая на скорости в 10–100 м/с мишенями точно в центр камеры (это сейчас мишень филигранно устанавливают неподвижно на конце гигантской «иглы»).

Все это в том или ином виде должно быть проверено на другой опытной установке по ICF – европейский проект Hiper (High Power Laser Energy Research), пока существующий только на бумаге, обещает стать еще более мощным, чем NIF.

Недавно он получил финансирование на первый этап теоретических работ. Так что его успехи – в будущем, ведь построят Hiper не раньше, чем через 10 лет. А вот первые эксперименты в NIF начнутся уже в нынешнем июне.

Первый же опыт по запуску стабильной цепной реакции синтеза в этой огромной установке произойдет в 2010–2011 году, предсказывает Мозес. Учитывая отставание по времени главного нынешнего соперника NIF по ядерному синтезу – токамака ITER (он заработает где-то в 2016–2018 году) – можно сказать, что Ливерморская лаборатория способна сорвать банк.


Другие новости по данной тематике: